Brief History	The Easy Black Box	Application	Further Remarks	References
		000000 0000000000		

Shelah's Easy Black Box

Gabriel Salazar Universität Freiburg

Hejnice, January 31st, 2014

Image: A match a ma

æ

Brief History ●○	The Easy Black Box	Application 000000 00000000000	Further Remarks 00	References O
Brief History				

Shelah's Black Box - Brief History

- Combinatorial principle in ZFC.
- Partially predicts maps under cardinal conditions.
- First appeared in 1985 (Udine Conference on Abelian Groups) without an explicit name.
- Gerenal Black Box from A.L.S. Corner and R. Göbel, Prescribing endomorphism algebras - A unified treatment.
- Different versions of the Black Box appear, like the Strong Black Box and variations.

Brief History ○●	The Easy Black Box	Application 000000 0000000000	Further Remarks	References O
Brief History				

- Easy Black Box appeared in 2007 (Cubo A Mathematical Journal).
- More applications in (complicated) algebraic constructions.
- Current state of development: Replace the Black Box by the Easy Black Box and a suitably strong Step Lemma.

Brief History	The Easy Black Box ●○○○○○	Application 000000 00000000000	Further Remarks	References O
Notation and Definitions	5			

Notation and Definitions

Order-preserving sequences

$$^{\omega\uparrow}\lambda = \{ \eta : \omega \to \lambda \mid \eta(m) < \eta(n) \text{ for } m < n \}.$$

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 二面 - のへの

Brief History	The Easy Black Box ●೦೦೦೦೦	Application 000000 00000000000	Further Remarks	References O
Notation and Definitions	;			

Notation and Definitions

Order-preserving sequences

$${}^{\omega\uparrow}\lambda = \{ \eta : \omega \to \lambda \mid \eta(m) < \eta(n) \text{ for } m < n \}.$$

Order-preserving finite sequences

$${}^{\omega\uparrow>}\lambda = \{ \, \eta: \ell o \lambda \mid \eta(m) < \eta(n) \text{ for } m < n < \ell < \omega \, \}.$$

Brief History 00	The Easy Black Box ○●○○○○	Application 000000 00000000000	Further Remarks	References O
Notation and Definition	ins			

Definition For $\eta \in {}^{\omega\uparrow} \lambda \cup {}^{\omega\uparrow>} \lambda$, the support of η is

 $[\eta] = \{\eta \upharpoonright n \mid n \in \mathsf{dom}(\eta)\}$

Brief History 00	The Easy Black Box ○●○○○○	Application 000000 00000000000	Further Remarks	References O
Notation and Definition	ns			

Definition For $\eta \in {}^{\omega\uparrow} \lambda \cup {}^{\omega\uparrow>} \lambda$, the support of η is

$$[\eta] = \{\eta \upharpoonright n \mid n \in \mathsf{dom}(\eta)\}$$

Definition

For a set \mathfrak{X} , a trap is

 $g_{\eta}: [\eta] \to \mathfrak{X}.$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Brief History 00	The Easy Black Box ○○●○○○	Application 000000 00000000000	Further Remarks	References O
Notation and Definit	ions			

The Easy Black Box

For each cardinal $\lambda \geq \aleph_0$ and set \mathfrak{X} of cardinality $\leq \lambda^{\aleph_0}$ there is a family of traps

$$\langle g_{\eta} \mid \eta \in {}^{\omega\uparrow}\lambda \rangle$$

that satisfies the following

Brief History 00	The Easy Black Box ○○●○○○	Application 000000 00000000000	Further Remarks 00	References O
Notation and Definitions	5			

The Easy Black Box

For each cardinal $\lambda\geq\aleph_0$ and set $\mathfrak X$ of cardinality $\leq\lambda^{\aleph_0}$ there is a family of traps

$$\langle g_{\eta} \mid \eta \in {}^{\omega\uparrow}\lambda \rangle$$

that satisfies the following

Prediction Principle: for all $g : {}^{\omega\uparrow>}\lambda \to \mathfrak{X}$ and $\nu \in {}^{\omega\uparrow>}\lambda$, we can find $\eta \in {}^{\omega\uparrow}\lambda$ with $\nu \subset \eta$ and $g_{\eta} \subseteq g$.

イロト イポト イヨト イヨト 二日

Brief History	The Easy Black Box ○○○●○○	Application 000000 00000000000	Further Remarks	References O
Notation and Definitions	5			

A trap for the Strong Black Box is a quintuple $p = (\eta, V_*, V, \mathfrak{F}, \varphi)$ such that

1.
$$\eta \in {}^{\omega\uparrow}\lambda_k$$
,
2. $V \in [\Lambda]^{\leq \lambda_{k-1}}$ and $V_* \in [\Lambda_*]^{\leq \lambda_{k-1}}$,
3. (V_*, V) is Λ -closed,
4. $\Lambda^{\eta*} \subseteq V_*$,
5. $\|\overline{\xi}\| < \|\eta\|$ for all $\overline{\xi} \in V \cup V_*$,
6. For $\overline{\eta} \in \Lambda$, if $\|\overline{\eta}\| < \|\eta\|$ and $k \notin u_{\overline{\eta}}(V_*)$, then $\overline{\eta} \in V$.
7. For $\overline{\eta} \in \Lambda$, if $([\overline{\eta}] \setminus [\overline{\eta} \mid k]) \cap V_* \neq \emptyset$, then $[\overline{\eta}] \subseteq V_*$.
8. $\mathfrak{F} = \mathfrak{F}_{V_*V} = \{ y'_{\overline{\eta}} = b_{\overline{\eta}} + y_{\overline{\eta}} \mid \overline{\eta} \in V, b_{\overline{\eta}} \in \overline{B}_{V_*} \}$ is regressive,
9. $\varphi : G_{V_*V} \to G_{V_*V}$ is a homomorphism.

メロト メポト メヨト メヨト

э.

Brief History 00	The Easy Black Box ○○○○●○	Application 000000 00000000000	Further Remarks	References O
Notation and Definition	S			

The Strong Black Box

Let μ be an infinite cardinal, $\lambda = \mu^+$, $\theta \leq \lambda$ such that $\mu^{\theta} = \mu$ and k > 1. If $E \subseteq \lambda^o$ is stationary, then there is a family

$$\{ p_{\alpha} = (\eta^{\alpha}, V_{\alpha*}, V_{\alpha}, \mathfrak{F}_{\alpha}, \varphi_{\alpha}) \mid \alpha < \lambda \}$$

of traps such that

(1)
$$\| \eta^{\alpha} \| \in E$$
 for all $\alpha < \lambda$,
(2) $\| \eta^{\alpha} \| \leq \| \eta^{\beta} \|$ for all $\alpha < \beta < \lambda$,
(3) If $\| \eta^{\alpha} \| = \| \eta^{\beta} \|$ for $\alpha \neq \beta$, then $\| V_{\alpha*} \cap V_{\beta*} \| < \| \eta^{\alpha} \|$,

Brief History 00	The Easy Black Box ○○○○○●	Application 000000 00000000000	Further Remarks	References O
Notation and Definition	15			

(4) For any
$$\mathcal{V} \subseteq \Lambda$$
, any regressive family
 $\mathfrak{F}_{\Lambda_*\mathcal{V}} = \{ y'_{\overline{\eta}} = b_{\overline{\eta}} + y_{\overline{\eta}} \mid \overline{\eta} \in \mathcal{V}, b_{\overline{\eta}} \in \overline{B} \}$, any $\varphi \in \text{End } G_{\Lambda_*\mathcal{V}}$,
 $U \in [\Lambda_*]^{\leq \theta}$ and $\delta < \lambda$, the set of $\gamma \in E$ for which there is
some $\alpha < \lambda$ with

$$\| \eta^{\alpha} \| = \gamma, \, \delta < 0\eta^{\alpha}, \, V_{\alpha} = \mathcal{V}_{V_{\alpha*}}, \, \mathfrak{F}_{\alpha} = \mathfrak{F}_{\Lambda_* V_{\alpha}}, \, \varphi_{\alpha} \subseteq \varphi, \, U \subseteq V_{\alpha*}$$

is stationary.

Brief History 00	The Easy Black Box	Application ●00000 000000000000000000000000000000	Further Remarks	References O
Application				
	on			

Definition For an infinite cardinal μ ,

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへの

Brief History 00	The Easy Black Box	Application ●00000 ○0000000000	Further Remarks 00	References O
Application				
	on			

メロト メポト メヨト メヨト

3

Definition

For an infinite cardinal μ , define the **Beth-like sequence**

Brief History 00	The Easy Black Box	Application ●00000 ○0000000000	Further Remarks	References O
Application				
	on			

メロト メポト メヨト メヨト

æ

Definition

For an infinite cardinal μ , define the **Beth-like sequence**

1.
$$\beth_0^+(\mu) = \mu^+$$
.

Brief History 00	The Easy Black Box	Application ●00000 ○00000000000	Further Remarks	References O
Application				
	on			

For an infinite cardinal μ , define the **Beth-like sequence**

1.
$$\beth_0^+(\mu) = \mu^+.$$

2. $\beth_{n+1}^+(\mu) = \left(2^{\beth_n^+(\mu)}\right)^+.$

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへの

Brief History 00	The Easy Black Box	Application 000000 0000000000	Further Remarks	References O
Application				

For a commutative ring R with 1 and a countable multiplicatively closed subset $S \subset R \setminus \{0\}$ we say that

1. *R* is S-reduced if $\bigcap_{s \in S} sR = 0$.

Brief History 00	The Easy Black Box	Application 00000 0000000000	Further Remarks 00	References O
Application				

For a commutative ring R with 1 and a countable multiplicatively closed subset $\mathbb{S} \subset R \setminus \{0\}$ we say that

- 1. *R* is S-reduced if $\bigcap_{s \in S} sR = 0$.
- 2. *R* is S-torsion-free if sr = 0 with $s \in S$ and $r \in R$ implies r = 0.

Brief History 00	The Easy Black Box	Application 00000 0000000000	Further Remarks	References O
Application				

For a commutative ring R with 1 and a countable multiplicatively closed subset $\mathbb{S} \subset R \setminus \{0\}$ we say that

- 1. *R* is S-reduced if $\bigcap_{s \in S} sR = 0$.
- 2. *R* is S-torsion-free if sr = 0 with $s \in S$ and $r \in R$ implies r = 0.
- 3. *R* is an S-ring if *R* is S-reduced and S-torsion-free.

Brief History	The Easy Black Box	Application 00000 000000000000000000000000000000	Further Remarks 00	References O
Application				

1. The ring R is cotorsion-free if

$\operatorname{Hom}_R(\widehat{R},R)=0$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

and it is $\mathbb{S}\text{-reduced}.$

Brief History	The Easy Black Box	Application 00000 000000000000000000000000000000	Further Remarks 00	References O
Application				

1. The ring R is cotorsion-free if

$$\operatorname{Hom}_R(\widehat{R},R)=0$$

and it is $\mathbb S\text{-reduced}.$

2. We say that a *R*-module is κ -free if subsets of size $< \kappa$ are contained in a free *R*-submodule.

Brief History 00	The Easy Black Box	Application	Further Remarks 00	References O
Application				

Theorem

Let R be a cotorsion-free S-ring and A an R-algebra with $|A| \le \mu$ and free R-module A_R . If $\lambda = \beth_k^+(\mu)$ for some positive integer k, then we can construct an \aleph_k -free A-module G of cardinality λ with R-endomorphism algebra

$$\operatorname{End}_R G = A.$$

Brief History 00	The Easy Black Box	Application 000●00 0000000000	Further Remarks 00	References O
Application				

Theorem

Let R be a cotorsion-free S-ring and A an R-algebra with $|A| \le \mu$ and free R-module A_R . If $\lambda = \beth_k^+(\mu)$ for some positive integer k, then we can construct an \aleph_k -free A-module G of cardinality λ with R-endomorphism algebra

$$\operatorname{End}_R G = A.$$

(For example, take $R = \mathbb{Z}$, $\mathbb{S} = \{ p^n \mid n < \omega \}$ for a fixed prime number p and A a ring with free additive structure.)

Brief History 00	The Easy Black Box	Application 0000●0 00000000000	Further Remarks	References O
Application				
Motivatio	'n			

Theorem (A.L.S. Corner)

If a ring R with 1 is

1. countable,

2. reduced
$$(\bigcap_{r \in R \setminus \{0\}} rR = 0)$$
 and

3. torsion-free (as abelian group),

then

$R \cong \operatorname{End} G$

for a countable, reduced, torsion-free abelian group G.

Brief History 00	The Easy Black Box	Application 00000● 000000000000000000000000000000	Further Remarks	References O
Application				

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わんの

Brief History	The Easy Black Box	Application 00000● 000000000000000000000000000000	Further Remarks 00	References O
Application				

The construction was made with the General Black Box.

Brief History	The Easy Black Box	Application 00000● 000000000000000000000000000000	Further Remarks 00	References O
Application				

The construction was made with the General Black Box.

Constructed modules were \aleph_1 -free but not \aleph_2 -free.

Brief History	The Easy Black Box	Application 00000● 000000000000000000000000000000	Further Remarks 00	References O
Application				

The construction was made with the General Black Box.

Constructed modules were \aleph_1 -free but not \aleph_2 -free.

How to extend this construction to \aleph_k -freeness for k > 1?

Brief History 00	The Easy Black Box	Application ○○○○○○ ●○○○○○○○○○○○	Further Remarks	References O
Sketch of Construction				

Sketch of Construction

Take k > 1, $\mu = 2^{|A|}$ and for $1 \le m \le k$ let

$$\lambda_m = \beth_{m-1}^+(\mu).$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Brief History 00	The Easy Black Box	Application ○○○○○○ ●○○○○○○○○○○○	Further Remarks	References O
Sketch of Construction				

Sketch of Construction

Take
$$k > 1$$
, $\mu = 2^{|A|}$ and for $1 \le m \le k$ let $\lambda_m = \beth_{m-1}^+(\mu).$

These cardinals satisfy the following *cardinal condition*:

$$\lambda_{m+1}^{\lambda_m} = \lambda_{m+1}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

for all $1 \leq m < k$.

Brief History	The Easy Black Box	Application ○○○○○○ ○●○○○○○○○○○○	Further Remarks	References O
Sketch of Construction				

Consider the following sets:

$$\Lambda = {}^{\omega\uparrow}\lambda_1 \times {}^{\omega\uparrow}\lambda_2 \times \cdots \times {}^{\omega\uparrow}\lambda_{k-1} \times {}^{\omega\uparrow}\lambda_k$$

<ロ>

Brief History	The Easy Black Box	Application	Further Remarks	References
		000000 0000000000		
Sketch of Construct	tion			

Consider the following sets:

$$\Lambda = {}^{\omega\uparrow}\lambda_1 \times {}^{\omega\uparrow}\lambda_2 \times \cdots \times {}^{\omega\uparrow}\lambda_{k-1} \times {}^{\omega\uparrow}\lambda_k$$

and

$$\Lambda_* = \bigcup_{1 \le m \le k} \Lambda_m,$$

where

$$\Lambda_m = {}^{\omega\uparrow}\lambda_1 \times \cdots \times {}^{\omega\uparrow>}\lambda_m \times \cdots \times {}^{\omega\uparrow}\lambda_k.$$

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○●○○○○○○○○○	Further Remarks	References O
Sketch of Construction			i .	

Elements of Λ :

$$\overline{\eta} = (\eta_1, \ldots, \eta_k)$$

Elements of Λ_* :

$$\overline{\eta} \mid \langle \boldsymbol{m}, \boldsymbol{n} \rangle = (\eta_1, \ldots, \eta_m \upharpoonright \boldsymbol{n}, \ldots, \eta_k)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Brief History 00	The Easy Black Box	Application ○○○○○ ○○○●○○○○○○○	Further Remarks 00	References O
Sketch of Construction				

We consider the free A-module

$$B = \bigoplus_{\overline{\nu} \in \Lambda_*} Ae_{\overline{\nu}}$$

and its *p*-completion \widehat{B} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○日▼

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○●○○○○○○	Further Remarks	References O
Sketch of Construction				

The idea is to choose a family
$$\mathfrak{F}\subseteq \widehat{B}$$
 to construct

$$G = \langle B, \mathfrak{F} \rangle_* = \{ b \in \widehat{B} \mid p^n b \in \langle B, \mathfrak{F} \rangle \text{ for some } n < \omega \}$$

where for all $n < \omega$,

$$p^n G = G \cap p^n \widehat{B}.$$

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○●○○○○○○	Further Remarks	References O
Sketch of Construction				

The idea is to choose a family
$$\mathfrak{F}\subseteq \widehat{B}$$
 to construct

$$G = \langle B, \mathfrak{F} \rangle_* = \{ b \in \widehat{B} \mid p^n b \in \langle B, \mathfrak{F} \rangle \text{ for some } n < \omega \}$$

where for all $n < \omega$,

$$p^n G = G \cap p^n \widehat{B}.$$

In this way,

 $B \subseteq G \subseteq \widehat{B}.$

メロト メポト メヨト メヨト

э.

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○●○○○○○	Further Remarks	References O
Sketch of Construction				

For $X_* \subseteq \Lambda_*$, you can also consider submodules

$$B_{X_*} = igoplus_{\overline{
u} \in X_*} Ae_{\overline{
u}}$$

and do the same to obtain an A-module G_{X_*} with

$$B_{X_*} \subseteq G_{X_*} \subseteq \widehat{B}_{X_*}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○○	Further Remarks	References ○
Sketch of Constructi	on			

The family $\mathfrak F$ will be of the form

$$\mathfrak{F} = \{ \pi_{\overline{\eta}} b_{\overline{\eta}} + y_{\overline{\eta}} \mid \overline{\eta} \in X \}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへの

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○○	Further Remarks	References ○
Sketch of Constructio	n			

The family \mathfrak{F} will be of the form

$$\mathfrak{F} = \{ \, \pi_{\overline{\eta}} b_{\overline{\eta}} + y_{\overline{\eta}} \mid \overline{\eta} \in X \, \}$$

where

1. $X \subseteq \Lambda$.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト → 画 → の Q ()

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○○	Further Remarks	References O
Sketch of Construction				

The family \mathfrak{F} will be of the form

$$\mathfrak{F} = \{ \, \pi_{\overline{\eta}} b_{\overline{\eta}} + y_{\overline{\eta}} \mid \overline{\eta} \in X \, \}$$

where

- 1. $X \subseteq \Lambda$.
- 2. The elements

$$y_{\overline{\eta}} = \sum_{i=0}^{\infty} p^i \left(\sum_{m=1}^{k} e_{\overline{\eta}|\langle m,i \rangle} \right)$$

are specific, previously constructed elements of \widehat{B}_{X_*} .

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○○	Further Remarks	References O
Sketch of Construction				

The family \mathfrak{F} will be of the form

$$\mathfrak{F} = \{ \pi_{\overline{\eta}} b_{\overline{\eta}} + y_{\overline{\eta}} \mid \overline{\eta} \in X \}$$

where

- 1. $X \subseteq \Lambda$.
- 2. The elements

$$y_{\overline{\eta}} = \sum_{i=0}^{\infty} \rho^i \left(\sum_{m=1}^k e_{\overline{\eta}|\langle m,i \rangle} \right)$$

イロト イ理ト イヨト イヨト 一臣

are specific, previously constructed elements of \widehat{B}_{X_*} .

3.
$$b_{\overline{\eta}} \in B_{X_*}$$
, $\pi_{\overline{\eta}} \in \widehat{R}$.

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○	Further Remarks	References O
Sketch of Construct	ion			
T I 0				

Step Lemmas allow us to choose the elements of \mathfrak{F} in order to eliminate unwanted endomorphisms.

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○	Further Remarks	References O
Sketch of Construction				

Step Lemmas allow us to choose the elements of \mathfrak{F} in order to eliminate unwanted endomorphisms.

The **BASIC** idea is the following:

If an S-ring R satisfies $\pi R \cap R = 0$ for some $\pi \in \widehat{R}$ and you 1. want to add $y_{\overline{\eta}}$ to \mathfrak{F} ,

- 4 同 6 4 日 6 4 日 6

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○	Further Remarks	References O
Sketch of Construction				

Step Lemmas allow us to choose the elements of \mathfrak{F} in order to eliminate unwanted endomorphisms.

The **BASIC** idea is the following:

If an S-ring R satisfies $\pi R \cap R = 0$ for some $\pi \in \widehat{R}$ and you

- 1. want to add $y_{\overline{\eta}}$ to \mathfrak{F} ,
- 2. have an endomorphism $\varphi: B_{X_*} \to B_{X_*}$ and

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○	Further Remarks	References O
Sketch of Construction	on			

Step Lemmas allow us to choose the elements of \mathfrak{F} in order to eliminate unwanted endomorphisms.

The **BASIC** idea is the following:

If an S-ring R satisfies $\pi R \cap R = 0$ for some $\pi \in \widehat{R}$ and you

- 1. want to add $y_{\overline{\eta}}$ to \mathfrak{F} ,
- 2. have an endomorphism $\varphi: B_{X_*} \to B_{X_*}$ and
- 3. have an element $z \in B_{X_*}$ with $z\varphi \notin Az$,

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○●○○○	Further Remarks	References O
Sketch of Construction				

Step Lemmas allow us to choose the elements of \mathfrak{F} in order to eliminate unwanted endomorphisms.

The **BASIC** idea is the following:

If an S-ring R satisfies $\pi R \cap R = 0$ for some $\pi \in \widehat{R}$ and you

- 1. want to add $y_{\overline{\eta}}$ to \mathfrak{F} ,
- 2. have an endomorphism $\varphi: B_{X_*} \to B_{X_*}$ and
- 3. have an element $z \in B_{X_*}$ with $z\varphi \notin Az$,

then you can choose an $\pi_{\overline{\eta}}\in\{0,\pi\}$ such that φ does not extend to an endomorphism

$$\varphi: \left\langle B_{X_*}, \pi_{\overline{\eta}} z + y_{\overline{\eta}} \right\rangle_* \to \left\langle B_{X_*}, \pi_{\overline{\eta}} z + y_{\overline{\eta}} \right\rangle_*.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Brief History	The Easy Black Box	Application ○○○○○○ ○○○○○○○●○○	Further Remarks	References O
Sketch of Construction				

We have to choose a lot of these corrections and we have to choose them correctly!

This is where the Black Box is needed.

Brief History	The Easy Black Box	Application ○○○○○○ ○○○○○○○●○○	Further Remarks	References O
Sketch of Construction				

We have to choose a lot of these corrections and we have to choose them correctly!

This is where the Black Box is needed.

In the proof of this theorem, \mathfrak{X} is a set of tuples

 (G, H, P, Q, R, ψ)

where the entries are either A-submodules or subsets of Λ and Λ_* of size λ_m that belong to families of size $\lambda_{m+1}^{\lambda_m} = \lambda_{m+1}$, and $\psi : G \to H$.

Brief History	The Easy Black Box	Application	Further Remarks	References
		000000 0000000000		
Sketch of Construct	tion			

WARNING

The following is an **oversimplified** argument!

- 4 同 6 4 日 6 4 日 6

æ

Brief History 00	The Easy Black Box	Application ○○○○○○ ○○○○○○○○○○●	Further Remarks	References ○
Sketch of Construction	on			

The proof goes on induction on k-1 starting at 0.

Brief History	The Easy Black Box	Application ○○○○○○ ○○○○○○○○○○●	Further Remarks	References O
Sketch of Construction				

The proof goes on induction on k-1 starting at 0.

If we are at stage *m* of the induction, take an enumeration of ${}^{\omega\uparrow}\lambda_m = \langle \eta_\alpha \mid \alpha < \lambda_m \rangle$ without repetitions.

Brief History	The Easy Black Box	Application ○○○○○ ○○○○○○○○○●	Further Remarks	References O
Sketch of Construction				

The proof goes on induction on k - 1 starting at 0.

If we are at stage *m* of the induction, take an enumeration of ${}^{\omega\uparrow}\lambda_m = \langle \eta_\alpha \mid \alpha < \lambda_m \rangle$ without repetitions.

By letting α run and checking trap by trap at

$$g_{\eta_{\alpha}}(\eta_{\alpha} \upharpoonright n) = (G_{\alpha n}, H_{\alpha n}, P_{\alpha n}, Q_{\alpha n}, R_{\alpha n}, \psi_{\alpha n}),$$

if these components extend each other and $\psi_{\alpha n}$ coincides with φ in $G_{\alpha n}$, then we choose $\pi_{\overline{\eta}}$ to kill φ . Otherwise just take $\pi_{\overline{\eta}} = 0$.

Brief History 00	The Easy Black Box	Application 000000 00000000000	Further Remarks ●○	References O
Other Applications?				
Question				

What else could be constructed with the Easy Black Box?

メロト メポト メヨト メヨト

æ

Brief History	The Easy Black Box	Application 000000 0000000000	Further Remarks ○●	References O
Other Applications?				

Thank You!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

3

Brief History 00	The Easy Black Box	Application 000000 0000000000	Further Remarks	References ●
References				
References				

- A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 13 (1963), 687 - 710.
- A.L.S. Corner, R. Göbel, Prescribing endomorphism algebras A unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447 - 479.
- R. Göbel, D. Herden, S. Shelah, Prescribing endomorphism algebras of ℵ_n-free modules, to appear in J. Eur. Math. Soc. 17 (2014).
- R. Göbel, D. Herden, H. G. Salazar Pedroza, ℵ_k-free Separable Groups with Prescribed Endomorphism Ring, submitted to the Pacific J. Math.
- 5. D. Herden, Constructing \aleph_k -free Structures, Habilitationsschrift, University of Duisburg-Essen (2013).
- H. G. Salazar Pedroza, Combinatorial Principles and ℵ_k-free Modules, PhD Thesis, University of Duisburg-Essen (2012).
- S. Shelah, ℵ_n-free abelian groups with no non-zero homomorphisms to ℤ, Cubo A Mathematical Journal 9 (2007), 59 - 79.