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Brief History

Shelah’s Black Box - Brief History

I Combinatorial principle in ZFC.

I Partially predicts maps under cardinal conditions.

I First appeared in 1985 (Udine Conference on Abelian Groups)
without an explicit name.

I Gerenal Black Box from A.L.S. Corner and R. Göbel,
Prescribing endomorphism algebras - A unified treatment.

I Different versions of the Black Box appear, like the Strong
Black Box and variations.
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Brief History

I Easy Black Box appeared in 2007 (Cubo - A Mathematical
Journal).

I More applications in (complicated) algebraic constructions.

I Current state of development: Replace the Black Box by the
Easy Black Box and a suitably strong Step Lemma.
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Notation and Definitions

Notation and Definitions

Order-preserving sequences

ω↑λ = { η : ω → λ | η(m) < η(n) for m < n }.

Order-preserving finite sequences

ω↑>λ = { η : `→ λ | η(m) < η(n) for m < n < ` < ω }.
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Notation and Definitions

Definition
For η ∈ ω↑λ ∪ ω↑>λ, the support of η is

[ η ] = { η � n | n ∈ dom(η) }

Definition
For a set X, a trap is

gη : [ η ]→ X.
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Notation and Definitions

The Easy Black Box

For each cardinal λ ≥ ℵ0 and set X of cardinality ≤ λℵ0 there is a
family of traps

〈 gη | η ∈ ω↑λ 〉

that satisfies the following

Prediction Principle: for all g : ω↑>λ→ X and ν ∈ ω↑>λ, we can
find η ∈ ω↑λ with ν ⊂ η and gη ⊆ g .
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Notation and Definitions

Definition
A trap for the Strong Black Box is a quintuple p = (η,V∗,V ,F, ϕ)
such that

1. η ∈ ω↑λk ,

2. V ∈ [ Λ ]≤λk−1 and V∗ ∈ [ Λ∗ ]≤λk−1 ,

3. (V∗,V ) is Λ-closed,

4. Λη∗ ⊆ V∗,

5. ‖ ξ ‖ < ‖ η ‖ for all ξ ∈ V ∪ V∗,

6. For η ∈ Λ, if ‖ η ‖ < ‖ η ‖ and k /∈ uη(V∗), then η ∈ V .

7. For η ∈ Λ, if ([ η ] \ [ η � k ]) ∩ V∗ 6= ∅, then [ η ] ⊆ V∗.

8. F = FV∗V = { y ′η = bη + yη | η ∈ V , bη ∈ BV∗ } is regressive,

9. ϕ : GV∗V → GV∗V is a homomorphism.
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Notation and Definitions

The Strong Black Box

Let µ be an infinite cardinal, λ = µ+, θ ≤ λ such that µθ = µ and
k > 1. If E ⊆ λo is stationary, then there is a family

{ pα = (ηα,Vα∗,Vα,Fα, ϕα) | α < λ }

of traps such that

(1) ‖ ηα ‖ ∈ E for all α < λ,

(2) ‖ ηα ‖ ≤ ‖ ηβ ‖ for all α < β < λ,

(3) If ‖ ηα ‖ = ‖ ηβ ‖ for α 6= β, then ‖Vα∗ ∩ Vβ∗ ‖ < ‖ ηα ‖,
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Notation and Definitions

(4) For any V ⊆ Λ, any regressive family
FΛ∗V = { y ′η = bη + yη | η ∈ V, bη ∈ B }, any ϕ ∈ End GΛ∗V ,

U ∈ [ Λ∗ ]≤θ and δ < λ, the set of γ ∈ E for which there is
some α < λ with

‖ ηα ‖ = γ, δ < 0ηα, Vα = VVα∗ , Fα = FΛ∗Vα , ϕα ⊆ ϕ, U ⊆ Vα∗

is stationary.
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Application

Application

Definition
For an infinite cardinal µ,

define the Beth-like sequence

1. i+
0 (µ) = µ+.

2. i+
n+1(µ) =

(
2i

+
n (µ)

)+
.
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Application

Definition
For a commutative ring R with 1 and a countable multiplicatively
closed subset S ⊂ R \ {0} we say that

1. R is S-reduced if
⋂

s∈S sR = 0.

2. R is S-torsion-free if sr = 0 with s ∈ S and r ∈ R implies
r = 0.

3. R is an S-ring if R is S-reduced and S-torsion-free.
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Application

Definition

1. The ring R is cotorsion-free if

HomR(R̂,R) = 0

and it is S-reduced.

2. We say that a R-module is κ-free if subsets of size < κ are
contained in a free R-submodule.
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Application

Theorem
Let R be a cotorsion-free S-ring and A an R-algebra with |A | ≤ µ
and free R-module AR . If λ = i+

k (µ) for some positive integer k,
then we can construct an ℵk -free A-module G of cardinality λ with
R-endomorphism algebra

EndR G = A.

(For example, take R = Z, S = { pn | n < ω } for a fixed prime
number p and A a ring with free additive structure.)
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Application

Motivation

Theorem (A.L.S. Corner)

If a ring R with 1 is

1. countable,

2. reduced (
⋂

r∈R\{0} rR=0) and

3. torsion-free (as abelian group),

then
R ∼= End G

for a countable, reduced, torsion-free abelian group G .
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Application

A.L.S. Corner and R. Göbel extended this result to modules over
rings of uncountable size.

The construction was made with the General Black Box.

Constructed modules were ℵ1-free but not ℵ2-free.

How to extend this construction to ℵk -freeness for k > 1?
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Sketch of Construction

Sketch of Construction

Take k > 1, µ = 2|A | and for 1 ≤ m ≤ k let

λm = i+
m−1(µ).

These cardinals satisfy the following cardinal condition:

λλm
m+1 = λm+1

for all 1 ≤ m < k .
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Sketch of Construction

Consider the following sets:

Λ = ω↑λ1 × ω↑λ2 × · · · × ω↑λk−1 × ω↑λk

and

Λ∗ =
⋃̇

1≤m≤k

Λm,

where
Λm = ω↑λ1 × · · · × ω↑>λm × · · · × ω↑λk .

Gabriel Salazar

Shelah’s Easy Black Box



Brief History The Easy Black Box Application Further Remarks References

Sketch of Construction

Consider the following sets:

Λ = ω↑λ1 × ω↑λ2 × · · · × ω↑λk−1 × ω↑λk

and

Λ∗ =
⋃̇

1≤m≤k

Λm,

where
Λm = ω↑λ1 × · · · × ω↑>λm × · · · × ω↑λk .

Gabriel Salazar

Shelah’s Easy Black Box



Brief History The Easy Black Box Application Further Remarks References

Sketch of Construction

Elements of Λ:
η = (η1, . . . , ηk )

Elements of Λ∗:

η �〈m, n〉 = (η1, . . . , ηm � n, . . . , ηk )
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Sketch of Construction

We consider the free A-module

B =
⊕
ν∈Λ∗

Aeν

and its p-completion B̂.
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Sketch of Construction

The idea is to choose a family F ⊆ B̂ to construct

G = 〈B,F 〉∗ = { b ∈ B̂ | pnb ∈ 〈B,F 〉 for some n < ω }

where for all n < ω,
pnG = G ∩ pnB̂.

In this way,
B ⊆ G ⊆ B̂.
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Sketch of Construction

For X∗ ⊆ Λ∗, you can also consider submodules

BX∗ =
⊕
ν∈X∗

Aeν

and do the same to obtain an A-module GX∗ with

BX∗ ⊆ GX∗ ⊆ B̂X∗ .
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Sketch of Construction

The family F will be of the form

F = {πηbη + yη | η ∈ X }

where

1. X ⊆ Λ.

2. The elements

yη =
∞∑

i=0

pi

(
k∑

m=1

eη�〈m,i〉

)

are specific, previously constructed elements of B̂X∗ .

3. bη ∈ BX∗ , πη ∈ R̂.
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Sketch of Construction

The Step Lemma

Step Lemmas allow us to choose the elements of F in order to
eliminate unwanted endomorphisms.

The BASIC idea is the following:

If an S-ring R satisfies πR ∩ R = 0 for some π ∈ R̂ and you

1. want to add yη to F,
2. have an endomorphism ϕ : BX∗ → BX∗ and
3. have an element z ∈ BX∗ with zϕ /∈ Az ,

then you can choose an πη ∈ {0, π} such that ϕ does not extend
to an endomorphism

ϕ : 〈BX∗ , πηz + yη 〉∗ → 〈BX∗ , πηz + yη 〉∗ .
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Sketch of Construction

We have to choose a lot of these corrections and we have to
choose them correctly!

This is where the Black Box is needed.

In the proof of this theorem, X is a set of tuples

(G ,H,P,Q,R, ψ)

where the entries are either A-submodules or subsets of Λ and Λ∗
of size λm that belong to families of size λλm

m+1 = λm+1, and
ψ : G → H.
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Sketch of Construction

WARNING
The following is an oversimplified

argument!
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Sketch of Construction

The proof goes on induction on k − 1 starting at 0.

If we are at stage m of the induction, take an enumeration of
ω↑λm = 〈 ηα | α < λm 〉 without repetitions.

By letting α run and checking trap by trap at

gηα(ηα � n) = (Gαn,Hαn,Pαn,Qαn,Rαn, ψαn),

if these components extend each other and ψαn coincides with ϕ in
Gαn, then we choose πη to kill ϕ. Otherwise just take πη = 0.
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Other Applications?

Question

What else could be constructed with the Easy Black Box?
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Other Applications?

Thank You!
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2. A.L.S. Corner, R. Göbel, Prescribing endomorphism algebras - A unified treatment, Proc. London Math.
Soc. (3) 50 (1985), 447 - 479.
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